
CS4605 Lab 5
Winter 2004

George W. Dinolt

March 4, 2004

1 Introduction

This lab is a demonstration of the application of the current access set.
The idea is that the transform function only adds to the current access
set. We also illustrate how to manage the sequence functions that appear
in the Goguen/Meseguer paper. We are not (repeat not) illustrating any
non-interference models in this lab.

We are also providing another illustration of the structuring and mapping
capabilities of PVS using the IMPORTING command. In this case, we have the
following structure. Here, the system specification describes the details of
the implementation. We haven’t specified any of the details in our case, but
we could have. The AccessState specification describes how we view State
in our model. Note that the system doesn’t have an “explicit” notion of
state. That is something that we impose. The state specification defines
what we mean be state changes (transform) and what we mean by secure

seqthm

system

AccessState

Figure 1: Structure of the specification

1



state. I have included the specifications at the end of this file for you to look
at.

The seqthm specification shows how sequences of state changes are de-
scribed. In the previous work, we defined a single sequence and assumed that
it was constructed correctly. In this work we follow the model described in
the non-interference approach. That is we start with a single initial state,
and handle any sequence of inputs. We show that for any sequence of inputs,
if the transform function has the “correct” properties, then every output
sequence of states will be secure.1

2 What you need to do

You can find copies of the three specification here, AccessState.pvs,
system.pvs and seqthm.pvs. You can also find the specifications on proof

at /disk1/cisr/pvs-examples/lab5.
You should download all three specifications into an empty directory and

proceed to parse, generate tccs and prove any tccs, lemmas and theorems
(but not ASSUMPTIONS) in the two specs. The seqthm specification has one
longish theorem to prove. With enough expansions, etc. you should be able
to manage it.

Once these two are handled, you should parse and generate the tccs for
the system specification. Note that there are no theorems, but that if you
prove all the tccs you get the theorem from seqthm for free.

You should pay attention as to how the mappings are accomplished. You
should note that the State is not explicitly defined anywhere in the text of
the system specification. It is imported from AccessState. The structure
of State is imposed on the system specification. This is also true for other
parts of the specification.

You should prove all the tccs. It turns out that there really is only one
that requires any work. It looks very ugly. All the extra notation is to
help you see which parts of the imported specifications the various types
come from. You can ignore the extra detail. It does prove with the simple
commands that you have at your disposal. You cannot (repeat cannot) use
grind or its relatives. I want you to try and work out the details for yourself.
This may help you see the relationships better.

1We might also want to show that such a sequence also satisfies a non-intereference
claim, but that is too hard for this lab, i.e. I haven’t been able to state and prove it yet.

2

http://www.nps.navy.mil/cs/Dinolt/Courses/AY2004/Winter/CS4605/Labs/lab5/AccessSet.pvs
http://www.nps.navy.mil/cs/Dinolt/Courses/AY2004/Winter/CS4605/Labs/lab5/system.pvs
http://www.nps.navy.mil/cs/Dinolt/Courses/AY2004/Winter/CS4605/Labs/lab5/seqthm.pvs


You should provide me evidence that you were successful. That is, what-
ever you hand in should convince me that there were no holes left in the things
that needed to be proved to accept and use the specification of system.

Good Luck.

3 The specifications

3.1 The “top level” system

system: theory
begin

Subjects: type+

Objects: type+

Labels: type+ from nat

Modes: type = {read, write}

sl sub(sb: Subjects): Labels

sl ob(ob: Objects): Labels

importing AccessState[Subjects, Objects, Modes, read, write, Labels, sl sub, sl ob]

importing seqthm[State, s0, Accesses, secure?, transform]

end system

3



3.2 The State Definition in AccessState

AccessState[Subjects: type+, Objects: type+, Modes: type+, read: Modes, write: Modes, La-
bels:

type from nat, sls: [Subjects → Labels], slo: [Objects → La-
bels]]: theory
begin

Accesses: type+ = [# sb: Subjects, ob: Objects, m: Modes #]

State: type+ = setof[Accesses]

s0: State = emptyset

transform(a: Accesses, st: State): State =
if (m(a) = read ∧ sls(sb(a)) ≥ slo(ob(a))) ∨ (m(a) = write ∧ sls(sb(a)) = slo(ob(a)))

then (st ∪ {a})
else st
endif

secure?(st: State): bool =
∀ (a: Accesses):

st(a) ⇒
(m(a) = read ∧ sls(sb(a)) ≥ slo(ob(a))) ∨
(m(a) = write ∧ sls(sb(a)) = slo(ob(a)))

end AccessState

4



3.3 The Sequencing Structures in seqthm

seqthm[State: type, s0: State, Inputs: type+, st?: [State → bool], trans-
form:

[Inputs, State → State]]: theory
begin

assuming
s0 secure: assumption st?(s0)

transition state secure: assumption
∀ (st: State): st?(st) ⇒ (∀ (x: Inputs): st?(transform(x, st)))

endassuming

InSeqs: type+ = sequence[Inputs]

do(inseq: InSeqs, n: nat): recursive State =
if n = 0 then s0 else transform(inseq(n− 1), do(inseq, n− 1)) en-

dif
measure n

dobar(inseq: InSeqs): sequence[State] = (λ (n: nat): do(inseq, n))

seq is secure: theorem ∀ (inseq: InSeqs): every(st?, dobar(inseq))

end seqthm

5


	Introduction
	What you need to do
	The specifications
	The ``top level'' system
	The State Definition in AccessState
	The Sequencing Structures in seqthm


